A BME központi honlapja sütiket (cookies) alkalmaz. A webhely használatával Ön beleegyezik a sütik alkalmazásába.

Applied analytical methods at the radiochemistry laboratory of the Institute of Nuclear Techniques:

  • X-ray emission spectrometry
  • Gamma spectrometry
  • Alpha spectrometry
  • Neutron activation analysis

Design and development of new analytical instruments

  • Design and construction a new automatic monitoring system to measure specific radio activity of 85Kr radioisotope for industrial production of discharge lamps applying gamma-spectrometry.
  • Design and construction a combined X-ray-Raman spectrometer for nuclear industry to analyse chemical and molecular composition of unknown inactive or radioactive materials.
  • Design and construction a novel 3D confocal X-ray spectrometer for macro XRF spectrometer for purpose of safeguard investigations. The spectrometer is capable of determination elemental quantitative composition of several materials with environmental, geological, biological, archaeological and nuclear industrial origin.

Research activity:

  • Development a new FPM (Fundamental Parameter Method) model for macro XRF analysis to quantify elementary compositions of solid and liquid materials in nuclear industry, Doi: 10.1002/xrs.2781.
  • New FPM model calculation for 2D micro X-ray fluorescence confocal imaging using synchrotron radiation, Doi: 10.1039/c6ja00161k.
  • Development of calibration techniques based on Monte Carlo transport calculations in field of gamma spectrometry, Doi: 10.1016/j.anucene.2019.01.010.
  • New quantification method for X-ray fluorescence analysis based on simulation iterative algorithm for quantification of X-ray fluorescence analysis based on MCNP6 simulation code, Doi: 10.1002/xrs.3154.
  • Continuous monitoring of the hermetic state of reactors of Paks NPP with nuclear analytical and radiochemical methods onsite.
  • Development a new time-dependent leakage model to identify defective fuel assemblies in nuclear reactors and its application for monitoring non-hermetic state of VVER-440 reactors.
  • Development of analytical methods of alpha spectrometry for safeguards applications in cooperation with the Hungarian Atomic Energy Agency and with the Nuclear Security Department (National Nuclear Forensic Laboratory) of the Centre of Energy Research of Eötvös Loránd Research Network.
  • New XANES measuring technique and model for investigations of biochemical processes in plants in-vivo mode used synchrotron radiation, Doi: 10.1002/xrs.2730

Main publications:

A. Gerényi, V. Czech, F. Fodor, L. Vincze, I. Szalóki, In vivo XANES measuring technique for studying the arsenic uptake in cucumber plants, X ‐ Ray Spectrometry, 46, 143-150, 2017.

I. Szalóki, A. Gerényi, G. Radócz, A. Lovas, B. De Samber and L. Vincze, FPM model calculation for micro X-ray fluorescence confocal imaging using synchrotron radiation, Journal of Analytical Atomic Spectrometry, 32, 334-344, 2017, DOI

I. Szalóki, A. Gerényi, G. Radócz: Confocal macro X‐ray fluorescence spectrometer on commercial 3D printer, X-Ray Spectrometry, 46, 497-506, 2017, DOI

G. Radócz, A. Gerényi, Sz. Czifrus, I. Szalóki, Determination of 137Cs content in fuel assemblies of a zero power reactor by Monte Carlo based efficiency calibration, Annals of Nuclear Energy, 130, 512-517, 2019, DOI

I. Szalóki, T. Pintér, I. Szalóki jnr., G. Radócz and A. Gerényi, A novel confocal XRF-Raman spectrometer and FPM model for analysis of solid objects and liquid substances, Journal of Analytical Atomic Spectrometry, 34,1652-1664, 2019, DOI

I. Szalóki, G. Radócz, A. Gerényi: Fundamental parameter model for quantification of total reflection X-ray fluorecene analysis, Spectrochimica Acta Part B Atomic Spectroscopy, 156, 33-41, 2019, DOI

I. Szalóki, A. Gerényi, G. Radócz, Reverse Monte Carlo iterative algorithm for quantification of X‐ray fluorescence analysis based on MCNP6 simulation code, X-Ray Spectrometry, 49, 587-595, 2020, DOI