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Electric Energy & Power Network

Electric energy Iis critical for our
technological civilization

Purpose of electric power grid:
generate/transmit/distribute

Challenges: multiple scales,
nonlinear, & complex system,
growing number of renewables &
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Probability

Challenge: Scale-free blackout size
distributions
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Figure 4. Probability distribution function of energy unserved

for North American blackouts 1993-1998.

Self-Organized Criticality (SOC) is
assumed for modeling this:

Competition of supply and demand

B. Carreras et al, Proceedings of Hawaii
International Conference on System
Sciences, Jan. 4-7, 2000, Maui,

Hawaii. 2000 IEEE

Extreme events occur more frequently
than by Gaussian model prediction

US HV 4941 nodes



Power-grids form heterogeneous,
hierarchical modular networks

Multi-level : high — medium - low voltages
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Synthetic Power grid generation

We created large: HV (transmission) - MV
(sub-transmission) - LV/(distribution)
level graphs with weights

For HV : from utilities and system
operators

For MV, LV: representative or reference
network models (RNM) : NEW algoritm
using iterative random MATLAB
processes, using empirical electrical
distributions

Admittance matrix:
for HV: Hungarian example
for MV,LV: synthetic grid modeling
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FIG. 1: Structural repreentation of the synthetic networks.
Left side: HV, right side: a radial subnetwork. The high-
lighted red node connects the two lavers. The network on the
picture has 68850 nodes and 68849 edges.

TABLE I: Power-grids generated and studied.

Network | N Edge no. | L o oW
1M 1098583 (1008601 [1.7440 = 10°|0 0
1.5M 1455343 | 1456367 |1.0457 x 10°%(0.0504 [0.0486
2.5M 2356331 (2356360 [1.6162 = 10%(0.0851|0.0586
23M 23551 140| 23551254 (2.1120 » 10°|0.0626|0.0741




Network graph analysis

« Basic network distributions:
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Figure 3. Admittance distribution of the power-grids generated.

Figure 2. Node degree distribution of the synthetic power-grids generated.
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The synchronization model

« Network failures, blackouts can be described by de-synchronization of
AC power

Simplest model : second order Kuramoto equations for phases @ of

oscillatc 0,(t) = )
. - K . -
wi(t) = o —,C-fﬂ.r(f)ﬂLﬁ! ;:‘1 ijsin[0;(r) — 6;(r)]

..........

coupled by control parameter: K , admittance matrix: A; and
o: dissipation

Quenched disorder in the topology, admittances and in the intrinsic
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The synchronization transition

« Synchronization is measured by the order parameter

z(ty) = r(ty) expif(ty) = Hﬂ-’Ze:{]} 6 (tx)] R(t;f] = {T[t;f)}

« Numerical integration
results in a first order
phase transition for
a fully coupled
(mean-field) network
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FIG. 2: Hysteresis in the steady state order parameter in
fully coupled networks of sizes N = 1000 (boxes) and N = 500
(diamonds). Inset: or(K) peaks for the two different network
sizes investigated.



Two-dimensional lattice grid

Synchronization transition on homogeneous, 2D lattices:

Numerical integration
results in a crossover
synchronization at

large K values

“Fast” relaxation to the
steady state
(no power-law)

Hysteresis

What is the consequenc
of heterogeneities ?
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Figure 6. Phase synchronization transition in the steady state in 2D networks of sizes N = 500 x 500 (red bullets),

N = 1000 x 1000 (blue boxes) using @ =3 and N = 500 x 500 (green stars ) using a = 1. Inset: time dependence or R(t), in
case of the N = 500 x 500 lattice, for control parameters: K =700, 350, 200, 150, 100, 80, 60, 50 in case of synchronized
initial condtion (top to bottom curves) and K = 700, 100 de-synchronized initial condition (top to bottom curves).



Heterogeneities in other network models

On lower dimensional regular, Euclidean lattices: critical point between
ordered and disordered phases due to the fluctuations
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Synchronization in power-grids

Synthetic and real power grids

considered without noise 1.0
Bigger synchronization R values 0s | i
than in 2D at a given K 1
but the stability is weak 06 f T 7 4
v - x T 1
Exponential relaxation remains 04 | 1{
Adding noisy oscillators: . & I o Ll
small effects. Even for | :: I I e |
a Gaussian with o= 3: e . . . =
0 50 100 150
few percent drop, K

Maximum -20% of R at the transition



Synchronization in power-grids

Standard deviation o, over
50 samples and fixed time
windows In the steady state

Fluctuations peaks disappear
as N — o

No real phase transition,
but a crossover,
like in the Kuramoto model

Crossover peaks are at
lower K-s (~30)
than in 2D (~100-200)
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De-synchronization avalanches
In power grids

The duration distribution of de-synchronization events:
R=1— R=1/N°%>

1
10
o
: \~: . “'\«-\___.__ “-a
= \_ RN
10" el \‘"".\_”\ AN ~ ]
t-l.?i:u \\:
25003
_____ t [ \
_____ (02
10° - : —
10 10 10

Figure 10. Avalanche duration distribution in the 1M power grid for a = 3 and different coupling values K = 0.7, 0.6, 1.5,
0.4, 0.2 (top to bottom solid curves). Dashed lines: PL fits for the tails.

K-dependent power-law tails: scale-free distributions like in GP



Centralized vs distributed sources

Renewable energy sources — distributed across the whole
network — Instability ?

We compared HV sources <« distributed
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Conclusions

The topological heterogeneity smears the transition that remains for large
couplings only : no real phase transition but a crossover

With respect to 2D topological+weight disorder enhances the
synchronization but decreases the fluctuations

Scale-free desynchronization duration avalanches — Rare large events
occur more frequently than in case of a Gaussian mathematical model

Frustrated synchronization ?
K-dependent power-law tails : heterogeneity effects (no SOC assumption)
Fault tolerance study : many stochastic elements have low influence

Distributed energy sources: After initial instability higher synchronization
than in HV
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